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A NUMERICAL TECHNIQUE FOR THREE-DIMENSIONAL 
COMPRESSIBLE BOUNDARY LAYERS 

ASP1 RUSTOM WADIA* 

Allison Gas Turbine Operations, General Motors Corporation, Indianapolis, Indiuna, U.S.A 

SUMMARY 

The non-linear two-point boundary value problem for three-dimensional compressible boundary layers is 
solved through the application of a boundary value technique for a range of parameters characterizing the 
nature of stagnation point flows. The analytical boundary conditions, at infinity, are applied at the edge of the 
computational mesh with iterations on the size of the domain. The solutions obtained show excellent 
agreement with the established similarity solutions for three-dimensional flows. The present method has the 
potential advantage of yielding the wall values of fk, g; and 0; as a part of the solution, contrary to the 
previously used 'shooting' methods. The algorithm is computationally simple and numerically stable and 
extremely suitable for engineering design applications. 

KEY WORDS Compressible Boundary Layer Stagnation Point Flow Boundary Value Problem 

INTRODUCTION 

The analysis of compressible boundary layers at a general three dimensional stagnation point has 
been motivated by the basic nature of the boundary-layer flow at such points, by the exact 
applicability there of similarity solutions, and by their relevance to the leading edge and nose 
regions of bodies in high speed flight. The solution is of immense importance in the design of 
thermal protection systems for launch vehicles, as well as for spacecraft re-entering planetary 
atmospheres at hypersonic speeds. 

Assuming viscosity to be a linear function of the temperature and using a two component stream 
function (Sl, S,) with the appropriate co-ordinate transformation, the pertinent boundary-layer 
equations reduce to the system of ordinary differential equations (following Reshotoko'): 

f " '  + ( f+ K g ) f "  + 1 + - - 1 (1 - 8) - f ' 2  = 0 U ( : >  I 
g"' + ( f +  Kg)y" + K (2) 

0" + P r ( f +  Kg)@ = 0 
(3) 

where f and y are the stream functions for the similarity solutions and 6' is the dimensionless 
enthalpy. The prime denotes differentiation with respect to the similarity variable, q. The 
parameters used in equations (1)-(3) are defined in the nomenclature. 
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The boundary conditions for these equations are: 

(4) q = 0: f = f ’  = g = gt = 6 = 0 

q+w: f ‘ = g I = 6 =  1 ( 5 )  

The parameter 8; = 8(0) is of prime interest in thermal design since it relates to the wall heat 
transfer rate. 

Equations (1)-(3) with the boundary conditions (4) and ( 5 )  constitute an eighth order non-linear 
system of ordinary differential equations with three arbitrary parameters and define a difficult 
non-linear two point boundary value problem. The above system of equations and its variants 
have been solved for a wide range of parameters by Poots7z Vimala and Nath,3, Nath and Meena,4 
Narayana and Ramamoorthy,’ Libby,6-8 Wortman’*’’ and Ba1u.l’ In Reference 2, the solution 
was obtained by solving an initial value problem using fourth order Runge-Kutta integration and 
iteratively adjusting the unknown wall values off”, g” and 8’ until the boundary conditions of 
equation (5)  were satisfied, a 3-space application of the well-known ‘shooting’ technique. In 
addition to small AT, the main difficulty was in selecting a set of initial values for every set of 
parameters, Pr, EI,/H, and K.  References 3-5 used parametric differentiation of Ruppert and 
Landahlt2 and also considered the effect of wall blowing (f’(0) # 0). References 6-8 used a 
quasilinearization procedure coupled with asymptotic solutions which involved considerable 
computational effort. References 9 and 10 used a functional approach and Reference 11 used 
Keller’s method for the solution of the problem. The turbomachinery applications of the similarity 
relations have been widely studied using the Runge-Kutta shooting method by Wang et al. l 3  and 
for an oscillating main stream by G ~ r l a . ’ ~ , ’ ~  

In most of the previous analyses, the major source of difficulty has been the determination of the 
proper values off“,  g” and 8’ at the wall to ensure an asymptotic approach of the velocities f‘ and 
g’7 and 0 to unity at infinity, the well known matching conditions of the viscous (near wall) solution 
to the inviscid solution. 

The aim of this paper is to extend a simple, direct, finite-difference method used in the solution of 
two dimensional incompressible stagnation point flows,16 to three dimensional compressible flows 
with possible direct applications to the annulus wall boundary layer regions for rotor tip leakage 
analyses17 and subsequent correlation with heat transfer measurements.’* The method uses 
Richardson’si9 general concept of using the infinity boundary conditions at the extremes of the 
mesh. Neglecting the details of the ‘far’ downstream flow did not lead to catastrophic instabilities 
being propagated upstream from the outflow boundaries. This concept has been demonstrated to 
be realistic if special localized grids16 are used to account for the boundary conditions at infinity in 
the discretization procedure with a finite computational domain with the iterations on the size of 
the domain. The following sections describe the method and present some of the results obtained. 
Comparisons with other available solutions show excellent agreement. 

METHOD OF SOLUTION 

Reformulation of the governing equations 

new variables (b and $ as 
Equations (1) and (2) can be rewritten as a system of first and second order equations by defining 

f ’ = Y ;  g ‘ = $  (6) 

Y”+( f+Kg)Y’+ 1 +  ---1 ( l - O ) - P  = o  i G: 1 1 (7) 
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Cp"+(f+Kg)&+K (8) 

The boundary conditions in equations (4) and ( 5 )  in terms of the new variables Cp and Y are 

f ( 0 )  = do)  = 0 (9) 
"(0) = 0, lim Y(y) = 1.0 

+(O) = 0, lim $(q) = 1.0 
9- 

9-00 

corresponding to equations (6), (7) and (8), respectively. 

Finite difference approximation 
A logarithmically varying grid was used within the laminar sublayer and the finite difference 

equations are obtained for a non-uniform grid with a dense mesh system near the wall region. 
Equation (6) is solved as an initial value problem. Within the laminar sublayer (i = l,j), the 

potential advantage of using a logarithmically varying grid was used to the fullest possible extent to 
accelerate the computational time using the numerical quadrature formula presented in 
Reference 20. For the non-uniform grid spacing outside the laminar sublayer, the trapezoidal rule 
was used, such that 

with errors 

where the domain (0, q,) is divided into n unequal parts andj  represents the node approximately at 
the edge of the laminar sublayer or the last node number of the logarithmically varying grid. For 
more accuracy it is possible to use the higher order quadrature formula of McNammee2' for 
unequal intervals. 

Equations (7), (8) and (3) are solved as two point boundary value problems using optimized 
successive over relaxation (OSOR). The finite difference approximations of equations (7), (8) and 
(3) at any interior node are: 

Y , = Cp, = 8, = 0 and Yn+ = q5,, + = 8, + , = 1 

where h,  and h ,  and defined in the nomenclature. 



194 ASP1 RUSTOM WADIA 

Iteration sequence 

The method of solution is based on the selection of any arbitrary finite value for the end of the 
computational mesh (y , ,) and solving the finite difference equations using arbitrary linear initial 
approximations for f ,  g, 8,& and Y.  The iteration scheme is illustrated schematically in Figure 1 
and is described briefly herein. 

The values of .f are computed at  all interior nodes using the quadrature formula of Reference 20 
in the laminar sublayer and equation (12) outside the sublayer. The values of Y are then obtained 
by solving equation (13) with an optimized over-relaxation parameter, o = 1.25. In the first few 

I Initialize, I 

i I 

Solve for Y using OSOR 1 

Numerical quadrature 

i Solve for 4 using OSOR 1 

Solve for 0 using OSOR 

j: 

4 convergence > 

Figure 1 Schematic diagram of the iteration scheme 
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outer loops the number of relaxation passes are limited to 11.  Numerical quadrature is used to 
compute g in a similar manner as f .  4 and 0 are then solved by over-relaxation using equations ( I  4) 
and ( I  5),  respectively, proceeding on similar lines as the iterations for Y. If the maximum absolute 
value of f ,  g, Y, q5 and 8 between two outer loop iterations does not exceed the value of the 
convergence parameter 8 ( the iterations are assumed to have converged. Numerical 
experiments indicate that the stability and the rate of convergence of the difference equations are 
not strongly dependent on the choice of the initial approximations of the five unknowns. 

Doubling the size of the computational domain (0, 2yml), the difference equations are solved 
again in a similar manner as stated above using the same step size variations of the non-uniform 
grid. If the two solutions off, y, 0, 4, and Y so obtained for (0, q m 1 )  and (0,2y,,) do not differ by 
more than five parts in one thousand, then the choice of ym = y,, is considered to be satisfactory 
and the values of f k ,  gk and S, are computed. If ym is unreasonably small, the solution oscillates in 
a diverging pattern or has a tendency to overshoot or undershoot in the vicinity of the infinity 
boundary condition. This behaviour was also noted in the case of two dimensional incompressible 
flowsi6 

NUMERICAL RESULTS AND DISCUSSIONS 

The method described above was used to obtain the solution for several Combinations of K = 
- 0.5,0,05, 1; H,/H, = 0, 1,2 and Pr = 0 7 ,  1,2. The size of the mesh was varied between y, = 4 
and ycu = 8 and typically consisted of 25 to 65 nodes depending on the described accuracy. The step 
sizes investigated varied as Ay = 0~001,0~025,0-05,0 1,0.25 and 0 5  near the wall. The effects of step 
size were not found to be critical in the convergence of the discretized system of equations. Table I 
illustrates the method involved in the mode of selection for the appropriate value of y, for K = 0.5, 
H J H ,  = 2.0 and Pr = 1.0. 

Table I1 summarizes the results obtained in the form off k, gk and Qw with comparisons with the 
values published in open literature for several different combinations of K ,  H,/H, and Pr.  All the 
calculations were performed with h ,  = 0.025, y, = 40, 8.0 and w = 1.25 and the results show 
excellent agreement with those of Reshotoko.’ 

CONCLUDING REMARKS 

The non-linear two point boundary value problem posed by equations (1)- (3) is solved successfully 
through the application of a boundary value technique for a range of K ,  Hw/lf, and Pr, the 
parameters characteriLing the nature of stagnation point flows. I t  is evident from the solution that 
there is good agreement between the results of the present investigation and those of References 1 
and 2. The present method has the potential advantage of yielding the wall values of j k ,  gk and Ow 
as a part of the solution with the iteration being on the size of the computational domain contrary 
to previously used ‘shooting’ methods. Whereas ‘shooting’ methods are realistic for simpler 
applications (e.g. Falkner -Skan) their use as a 3-space application is very tedious and unrealistic 
especially where solutions of engineering accuracy are sufficient and the problem has to be solved 
over a wide range of parameters (e.g. design optimization). The algorithm is computationally 
simple, numerically stable if y, is selected ‘far’ enough from the wall and extremely rapid for 
obtaining physically meaningful results. 

It is possible to anticipate that the present method could be used as a springboard for further 
studies on three dimensional compressible flows with suction or blowing and for unsteady flows. 
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Table 11. Comparison of f E, g; and B:, with reference 1 

K 

H w  

H o  

f:: 
s:: 
O W  
f : :  

s:: 
@W 

__ 

Pr 

Reference 1 

Reference 1 

Reference 1 

0.5 0.0 1 .o - 0 5  0 0  0 0  0.0 1 .o 1 .o 

2.0 1 .oo 1 .o 1 .o 0.0 1 .0 1 .o 0.0 1 .o 
1 .o 
1.7340 
1.2736 
0.7075 
1.7338 

0.70 
1.2327 
0.5707 
0.4975 
1,1326 

0.7 
1.3121 
1.3121 
0,6653 
1.3119 

1 .o 
1.2295 

- 0.09177 
0.5464 
1.2302 

1.0 
0.6495 
05074 
05074 
0.6489 

1 .o 
1.2327 
0.5707 
05707 
1.2326 

2.0 
1.7368 
06157 
06157 
1.7362 

1.0 
0.822 
0.822 
0.6989 
0.8219 

1 .o 
1.3121 
1.3121 
07621 
1.3119 

1.2786 0.5705 1.31 19 - 0.1 15 0.5067 05705 0.6156 0.8219 1.3119 

07076 0.5484 0.5067 0.5705 0.6156 0.6989 07622 

NOMENCLATURE 

= error of the quadrature formula in equation (12a) 
= error of the quadrature formula in equation (12b) 
= stream functions for similar solutions 

E,  
E ,  
f ,  g 
H = enthalpy 

K 

Pr = Prandtl number 
U ,  W = transformed velocity in X and 2 directions, respectively 
X ,  2 = transformed co-ordinates along the body surfaces 
Y = transformed normal co-ordinate 

d Wejdz 
d UeIdXs 

= ratio of principal velocity gradients = 

y = boundary layer similarity variable = Y 
H - H ,  

Y = f ’  
4 = g l  
( ) e  = local condition outside the boundary layer 
( )s = stagnation point value 
( )w =wall value 
( )* = free stream stagnation value 
( )< =node index 
( )k = iteration number 
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